FOODBORNE OUTBREAK INVESTIGATIONS: How Epidemiology Contributes to Public Health Action

W. Thane Hancock, MD MPH
Epidemic Intelligence Service Officer
Division of Foodborne, Waterborne and Environmental Diseases
National Center for Emerging and Zoonotic Infectious Diseases

Michigan Public Health Association Epidemiology Conference
March 30, 2012
Overview

- Overview of foodborne outbreak investigations in United States
- Examples of two recent foodborne outbreak investigations
- Preparing for the future
Foodborne Diseases: A Changing Landscape

Focal scenario

- Large number of cases in one jurisdiction
- Detected by affected group
- Local investigation
- Local solution
- Food handling error
Foodborne Diseases: A Changing Landscape

Focal scenario

- Path from farm to table was shorter
- Localized food distribution
Foodborne Diseases: A Changing Landscape

New dispersed scenario

- Fewer, but larger producers
- Wide distribution
- More imported food
- New techniques in food production and preparation
Foodborne Diseases: A Changing Landscape

New dispersed scenario
- Many affected communities
- Detected by lab-based subtype surveillance
- Response requires coordination among states and agencies
- Industrial contamination event
Public Health Infrastructure in the United States

- The county, city, state health department
- The federal agencies:
 - CDC, FDA, USDA, EPA
- "Tiered response" to emergencies
 - CDC provides back-up to states with epidemiologists, laboratory support, coordination of investigation
Federal Roles

- Disease surveillance
- Outbreak detection and investigation
- Education and training of public health staff
- Food safety policies
- Inspection and enforcement
- Product recall and traceback
- Investigation of production facilities
Cycle of Foodborne Disease Control and Prevention

- Surveillance
- Prevention Measures
- Epidemiologic Investigation
- Applied Research
What is PulseNet USA?

- National molecular subtyping network for foodborne disease
 - >80 public health and regulatory laboratories
- Perform molecular typing of foodborne disease-causing bacteria
 - Current method is pulsed-field gel electrophoresis (PFGE)
What is PulseNet USA?

- Share DNA “fingerprints” electronically
- DNA “fingerprints” are kept in national database at CDC
PulseNet Data Analysis: Searching for Clusters

- Monitors for similar patterns in past 2-4 months
- When cluster identified, PulseNet contacts epidemiologists

Cluster of indistinguishable patterns
87 labs in the PulseNet USA network

CDC PulseNet headquarters
★ Regional labs
▲ Local and secondary state labs
● Federal labs

December 2011
Clusters Reported to CDC by Source, 2008 (n=175)

<table>
<thead>
<tr>
<th>Source of Report</th>
<th>Percent of Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>PulseNet</td>
<td>75%</td>
</tr>
<tr>
<td>State</td>
<td>14%</td>
</tr>
<tr>
<td>Regulatory agency</td>
<td>3%</td>
</tr>
<tr>
<td>FBO Listserv</td>
<td>2%</td>
</tr>
<tr>
<td>Other</td>
<td>2%</td>
</tr>
<tr>
<td>Lab</td>
<td>1%</td>
</tr>
<tr>
<td>Media</td>
<td>1%</td>
</tr>
<tr>
<td>Epi-X</td>
<td>0.6%</td>
</tr>
<tr>
<td>International agency</td>
<td>0.6%</td>
</tr>
</tbody>
</table>
Isolates Reported to PulseNet USA, 1996-2011

Human *Food/Animal/Environment*

Entries are individual specimen patterns uploaded to PulseNet USA and include submissions to the Salmonella, Shiga toxin-producing E. coli O157 and non-O157, Shigella, Listeria, and Campylobacter databases.
Inherent Delays in Surveillance Timeline for Reporting Cases

1 – 3 days

Contact with health care system: 1 – 5 days

Patient Eats Contaminated Food

Stool Sample Collected

Diagnosis: 1 – 3 days

Public Health Lab Receives Sample

Shipping: 0 – 7 days

Patient Becomes Ill

Salmonella Identified

Serotyping & DNA fingerprinting: 2 – 10 days

Case Confirmed as Part of Outbreak
Cycle of Foodborne Disease Control and Prevention

Surveillance

Prevention Measures

Applied Research

Epidemiologic Investigation
CDC Outbreak Response Team

- Supports a national network of epidemiologists and public health officials who investigate foodborne outbreaks
- Collaboration between CDC and
 - State and local health departments
 - USDA
 - FDA
- Works in close partnership with PulseNet
- Comprehensive outbreak surveillance
- Rapid response to multi-state foodborne outbreaks
Steps in a Foodborne Outbreak Investigation

1. Detecting a possible outbreak
2. Defining and finding cases
3. Generating hypotheses
 - Hypothesis-generating interviews
 - Analytic studies
 - Laboratory testing of samples
4. Testing the hypotheses
5. Finding the point of contamination and source of the food
6. Controlling an outbreak
 - Recall product(s)
 - Remove source of contamination
 - Revise production process
7. Deciding an outbreak is over

If cases continue:
- Not finding associations between food & illness
- Finding associations between food & illness
- If cases stop: Unsolved mystery
- Cases stop
Some Features Considered in Triaging Clusters

• Pathogen
 – Severity (botulism v. *E. coli* O157 v. *Salmonella*)
 • Number of deaths or hospitalizations
 • Frequency of serotype or PFGE pattern
 • Distribution over time
 • Geographic distribution

• Person, place and time
 – “Momentum”: number of ill over time
 – Gender and age
 – Geographic distribution
<table>
<thead>
<tr>
<th>Year</th>
<th>Outbreak Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>E. coli O157 & bagged spinach</td>
</tr>
<tr>
<td>2006</td>
<td>E. coli O157 & shredded lettuce (restaurant chain A)</td>
</tr>
<tr>
<td>2006</td>
<td>E. coli O157 & shredded lettuce (restaurant chain B)</td>
</tr>
<tr>
<td>2006</td>
<td>Botulism & commercial pasteurized carrot juice</td>
</tr>
<tr>
<td>2006</td>
<td>Salmonella & fresh tomatoes</td>
</tr>
<tr>
<td>2007</td>
<td>E. coli O157 & frozen pizza</td>
</tr>
<tr>
<td>2007</td>
<td>Salmonella & peanut butter</td>
</tr>
<tr>
<td>2007</td>
<td>Salmonella & a vegetarian snack food</td>
</tr>
<tr>
<td>2007</td>
<td>Salmonella & dry dog food</td>
</tr>
<tr>
<td>2007</td>
<td>Salmonella & microwaveable pot pies</td>
</tr>
<tr>
<td>2007</td>
<td>Salmonella & dry puffed breakfast cereal</td>
</tr>
<tr>
<td>2007</td>
<td>E. coli O157 & ground beef</td>
</tr>
<tr>
<td>2007</td>
<td>Botulism & canned chili sauce</td>
</tr>
<tr>
<td>2008</td>
<td>Salmonella & cantaloupe</td>
</tr>
<tr>
<td>2008</td>
<td>E. coli O157 & ground beef</td>
</tr>
<tr>
<td>2008</td>
<td>Salmonella & fresh produce items containing foods</td>
</tr>
<tr>
<td>2009</td>
<td>Salmonella & peanut butter</td>
</tr>
<tr>
<td>2009</td>
<td>Salmonella & imported white and black pepper</td>
</tr>
<tr>
<td>2009</td>
<td>Salmonella & alfalfa sprouts</td>
</tr>
<tr>
<td>2009</td>
<td>Multidrug resistant Salmonella & ground beef (x2)</td>
</tr>
<tr>
<td>2009</td>
<td>E. coli O157 & blade tenderized steaks</td>
</tr>
<tr>
<td>2009</td>
<td>Salmonella & salami made with contaminated pepper</td>
</tr>
<tr>
<td>2009</td>
<td>E. coli O157 & prepackaged cookie dough</td>
</tr>
<tr>
<td>2009</td>
<td>Salmonella Typhi & frozen mamey fruit pulp</td>
</tr>
<tr>
<td>2009</td>
<td>Salmonella & frozen meals</td>
</tr>
<tr>
<td>2009</td>
<td>Salmonella & shell eggs</td>
</tr>
<tr>
<td>2009</td>
<td>Salmonella & alfalfa sprouts</td>
</tr>
<tr>
<td>2010</td>
<td>E. coli O145 & shredded romaine lettuce</td>
</tr>
<tr>
<td>2010</td>
<td>Salmonella & alfalfa sprouts</td>
</tr>
<tr>
<td>2010</td>
<td>Salmonella Typhi & frozen mamey fruit pulp</td>
</tr>
<tr>
<td>2010</td>
<td>Salmonella & frozen meals</td>
</tr>
<tr>
<td>2010</td>
<td>Salmonella & shell eggs</td>
</tr>
<tr>
<td>2010</td>
<td>Salmonella & alfalfa sprouts</td>
</tr>
<tr>
<td>2010</td>
<td>E. coli O157 & hazelnuts</td>
</tr>
<tr>
<td>2010</td>
<td>Multidrug resistant Salmonella & turkey burgers</td>
</tr>
<tr>
<td>2010</td>
<td>Salmonella & alfalfa/spicy sprouts</td>
</tr>
<tr>
<td>2011</td>
<td>Multidrug resistant Salmonella & ground turkey</td>
</tr>
<tr>
<td>2011</td>
<td>Salmonella & whole, fresh imported papayas</td>
</tr>
<tr>
<td>2011</td>
<td>Multidrug resistant Salmonella & ground turkey</td>
</tr>
<tr>
<td>2011</td>
<td>Listeria & cantaloupes</td>
</tr>
<tr>
<td>2011</td>
<td>Salmonella & imported pine nuts</td>
</tr>
<tr>
<td>2011</td>
<td>Salmonella & kosher broiled chicken livers</td>
</tr>
<tr>
<td>2011</td>
<td>E. coli O157 & romaine lettuce</td>
</tr>
<tr>
<td>2011</td>
<td>Multidrug resistant Salmonella & ground beef</td>
</tr>
</tbody>
</table>
OUTBREAK OF SALMONELLA HEIDELBERG INFECTIONS

May-November 2011
Outbreak Detection

- May 23, 2011: CDC PulseNet identified 30 *Salmonella* Heidelberg infections since March 1, 2011
- PFGE pattern was rare
 - Expect background of 2-4 uploads per month to PulseNet
- CDC Outbreak Response Team began coordinating a multistate investigation
Salmonella Heidelberg Outbreak PFGE Pattern
Uploads 2006–2011

- Human isolates only
- Cluster isolates highlighted

Uploads as of 08/15/2011
Salmonella

- Major bacterial cause of foodborne disease in U.S.
 - 1.2 million illnesses, ~400 deaths annually
- Many different sources
 - Meat, poultry, produce, animal contact
- >2,500 serotypes
 - Heidelberg is a common serotype
Salmonella Infections

- Incubation period 12 to 72 hours
- Illness duration 4 to 7 days
- Acute gastroenteritis: fever, diarrhea, abdominal cramps, vomiting, bloody stools
- Serious illness: meningitis, bloodstream infections, joint infections
 - Young children, immunocompromised, elderly
- Most do not require treatment other than oral fluids
 - May require rehydration with intravenous fluids
 - Antibiotics not usually indicated
Outbreak Case Definition

- Illness in a patient with *Salmonella* Heidelberg infection
- Illness onset after February 27, 2011
- Isolate matching PFGE pattern of the outbreak strain
Hypothesis Generation

- June–July, 2011: Hypothesis generating questionnaire
 - 35% (12/34) case-patients reported ground turkey
Hypothesis Testing

- Does 35% represent an elevated exposure rate?
 - Needed comparison group
 - Obtaining traditional control group is time consuming
 - Utilized FoodNet Population Survey - National food consumption survey
 - 11% of general population report ground turkey
 - 35% exposure rate in case patients was elevated.
 - Finding was statistically significant.
Identifying the Source

- July–August, 2011: Poultry Specific Questionnaire
 - 61% (17/28) case-patients reported eating ground turkey
- Outbreak strain isolated from retail ground turkey samples
Antibiotic Resistance Profiles

- Antibiotic resistance pattern between patient and retail poultry isolates matched
- Multi-drug resistant pattern
- Antibiotic resistance profile:
 - Ampicillin
 - Streptomycin
 - Gentamicin
 - Tetracycline
What Ground Turkey was Contaminated?

- Shopper card information from multiple patients showed specific brand of ground turkey products:
 - 3 national brands
 - 3 store brands

- USDA-FSIS traced brands back to a single production plant, Plant A, operated by Company A.
Epidemic Curve for *Salmonella* Heidelberg as of 8/3/2011 (n= 77)

Illnesses that began during this time may not have been reported.
Persons infected with *Salmonella* Heidelberg by state as of 8/3/2011 (n=77)
First Recall

- July 28, 2011: USDA’s Food Safety and Inspection Service (USDA-FSIS) informed Company A of potential link between ground turkey and Plant A
- August 3, 2011: Company A recalled ~36 million pounds of ground turkey products
- Largest USDA-FSIS Class I recall in U.S. history
The Outbreak Expands

- August 8, 2011: Second Heidelberg PFGE pattern matched retail sample
- CDC and states conducted new interviews
- 78% (7/9) of case-patients reported ground turkey consumption
- Case definition expanded to include this pattern
- 23 additional cases added to outbreak
Second Recall

- Samples collected from Plant A tested positive for outbreak strain after August recall
- September 11, 2011: Company A issued second recall of 185,000 pounds of ground turkey products
- Production of raw ground turkey products suspended at plant until corrective actions implemented
Infections with *Salmonella* Heidelberg by Week of Illness Onset, February–November, 2011 (n= 136)
Persons infected with *Salmonella* Heidelberg by state as of 11/15/2011 (n=136)
<table>
<thead>
<tr>
<th>Clinical Characteristics</th>
<th>n=136</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>63 (46 %)</td>
</tr>
<tr>
<td>Median age (range)</td>
<td>23 years (< 1 – 90 years)</td>
</tr>
<tr>
<td>Hospitalized</td>
<td>35 (38%)</td>
</tr>
<tr>
<td>Death</td>
<td>1 (0.7%)</td>
</tr>
</tbody>
</table>
Outbreak Overview

- Epidemiologic investigation, laboratory evidence and traceback can solve an outbreak
- Critical collaboration between state and federal agencies
- Shopper card information aided product identification
- Company A acted quickly to eliminate contaminated product
August-November 2011

OUTBREAK OF *LISTERIA* INFECTIONS
Outbreak Detection

- September 2, 2011: Colorado contacted CDC
 - Expected Listeria baseline—2 cases per month
 - Past 5 days—7 cases reported
 - Monthly total—9 cases
- All 9 cases hospitalized
- 2 deaths
- Age: 30-90 years (median age 84 years)
- 89% female
Listeria monocytogenes (LM) in the United States

- **Annual public health impact**
 - 1,600 illnesses
 - 1,450 hospitalizations
 - 250 deaths

- **Foodborne pathogen**
 - <1% bacterial foodborne illnesses
 - 19% food-related deaths

- **94% hospitalization rate**
 - Highest among foodborne pathogens

- **15.9% overall case-fatality rate**
 - 25–50% among newborns

Scallan E et. al., Emerging Infectious Diseases; 2011 Jan; 17(1); 7-15.
Listeria: Epidemiology

- Ubiquitous in soil and water
- Animal reservoirs
- Typical food vehicles
 - Unpasteurized (raw) milk
 - Raw-milk cheeses
 - Hot dogs
 - Deli meats
 - Smoked seafood
- Growth during refrigeration
- Mostly sporadic illness
 - 2–3 U.S. outbreaks annually
Listeria: Clinical Manifestations

- Long incubation: 3–70 days (median: 21 days)
- “Healthy” individuals
 - Asymptomatic
 - Febrile gastroenteritis
- Invasive disease
 - Septicemia
 - Meningitis
- High-risk groups
 - Immunocompromised
 - Older adults (≥60 years)
 - Pregnant women
 - Newborns
Timeline of Events: Multistate Listeriosis Outbreak—July–October, 2011 (n = 8)

- September 2 —
 - 8 cases reported since August 15
- Expect 1–2 cases in August in Colorado
Investigation

- Case definition
 - Illness onset after July 31
 - Culture-confirmed *Listeria* clinical infection
 - PFGE Isolate indistinguishable from any of four outbreak strains
- Case Finding
 - PFGE Patterns in PulseNet
Hypothesis Generation

- Patient interviews
 - Conducted by Colorado Department of Public Health and Environment
 - Confirm course of illness
 - Determine food exposures
 - Generate hypotheses
- Initial analysis showed:
 - Cantaloupe
 - Ham
Hypothesis Testing

- Results needed control comparison
 - Controls needed to be matched on case patient’s age range and health status
 - Identifying and interviewing traditional control group time consuming
 - General population results of FoodNet Population Survey were not ideal
- Compared to sporadic cases in *Listeria* Initiative
Listeria Initiative

- Enhanced surveillance system (CDC)
- Implemented 2004
 - >40 states currently participating
- All *Listeria* isolates are fingerprinted in PulseNet
- Standard extended questionnaire
 - Individual, sporadic illnesses
 - Food consumption history
- Ready bank of data for ill controls
 - Speed public health interventions
Hypothesis Testing

- *Listeria* Initiative data on sporadic cases used as control group
 - Matched on age and time of year
 - Outbreak cases compared to similar group of sporadic cases to assess differences in food exposure
 - Case-control analysis → Case-case analysis
Case comparison to The *Listeria* Initiative*

<table>
<thead>
<tr>
<th>Date</th>
<th>Cantaloupe</th>
<th>Ham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept 9</td>
<td>OR (95% CI) = 8.54 (1.32-∞)</td>
<td>OR (95% CI) = 2.01 (0.51–9.44)</td>
</tr>
<tr>
<td></td>
<td>Cases: 11/11 (100%)</td>
<td>Cases: 7/11 (64%)</td>
</tr>
<tr>
<td></td>
<td>Controls: 54/85 (64%)</td>
<td>Controls: 360/774 (47%)</td>
</tr>
<tr>
<td></td>
<td>P=0.02</td>
<td>P=0.41</td>
</tr>
</tbody>
</table>

* In controls, cantaloupe exposures limited to those with isolation dates in August. Controls are non-pregnancy associated sporadic cases among persons 60 years or greater.

** Cases initially limited to PFGE patterns 1 and 2.
Traceback: Cantaloupes

- FDA and Colorado state partners initiate traceback of cantaloupes
 - Preliminary interview and traceback implicate cantaloupes marketed as “Rocky Ford”
- Farm A identified as supplier of “Rocky Ford” cantaloupes supplied to stores where case-patients shopped
Laboratory Findings: Cantaloupes

- Cantaloupe collected from patient’s home
 - Whole and cut cantaloupe both positive for Listeria
 - PFGE identified 3 of 4 outbreak strains
- Farm A cantaloupes collected at retail
 - 10/10 (100%) tested positive for Listeria
 - PFGE identified 3 of 4 outbreak strains
- Farm A cantaloupes collected at retail by FDA
 - 9/10 (90%) tested positive for Listeria
 - PFGE identified a single outbreak strain
Timeline of Events: Multistate Listeriosis Outbreak—July–October, 2011 (n = 8)

- **September 2** —
 - 8 cases reported since August 15
- **Expect 1–2 cases in August in Colorado**
Timeline of Events: Multistate Listeriosis Outbreak—July–October, 2011 (n = 15)

- CDC establishes statistically significant association
- Colorado announces cantaloupes are the likely cause of illness
- FDA collects cantaloupes from retail
Timeline of Events: Multistate Listeriosis Outbreak—July–October, 2011 (n = 15)

- Colorado health officials and FDA visit Rocky Ford Producers including Farm A
 - Collect environmental and product samples
 - Further harvest at Farm A ceases as a precautionary measure
Timeline of Events: Multistate Listeriosis Outbreak—July–October, 2011 (n = 28)

- September 14
 - Ongoing traceback investigations converge on Farm A
 - Farm A voluntarily recalls all cantaloupe
Timeline of Events: Multistate Listeriosis Outbreak—July–October, 2011 (n = 53)

- September 19
 - Samples collected at Farm A yield several outbreak strains of *Listeria*
 - Fourth outbreak strain of *Listeria* identified
Timeline of Events: Multistate Listeriosis Outbreak—July–October, 2011 (n = 131)

- October 19
 - FDA announces findings of Farm A root cause environmental assessment conducted September 22–23
Timeline of Events: Multistate Listeriosis Outbreak—July–October, 2011 (n = 146)

- October 31
 - Last day of the outbreak period determined by CDC
Number of Patients by Date of Illness Onset — All States, July–October, 2011 (n = 145)

Farm A recalls all cantaloupe

Colorado cases
Non-Colorado cases

Number of Illnesses

Date of Illness Onset

August
September
October
Persons Infected with Outbreak Strains of Listeria, by State*

* n= 146 for whom information was reported to CDC on December 2, 2011
Characteristics — All Patients (n = 146)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median years (range)</td>
<td>77 (<1–96)</td>
</tr>
<tr>
<td>≥ 60 years of age</td>
<td>126 (86)</td>
</tr>
<tr>
<td>Female</td>
<td>85 (58)</td>
</tr>
<tr>
<td>Hospitalized*</td>
<td>142 (99)</td>
</tr>
<tr>
<td>Died</td>
<td>30 (21)</td>
</tr>
</tbody>
</table>

* Among 144 patients with available data
Root Cause Environmental Assessment — Farm A, September 22–23

- Joint assessment
 - Food and Drug Administration (FDA)
 - Colorado Department of Public Health and Environment
 - Prowers County Public Health
 - Colorado Department of Agriculture
- Identify factors leading to introduction, growth and spread of Listeria
- Environmental assessment
- Review management and production practices
Root Cause Environmental Assessment — Packing Operations

- Contamination likely during packing operations
- Sanitation practices deficient due to
 - Floors allowed standing water and not easily cleanable
 - Equipment not easily cleaned and sanitized
- Introduction of used processing equipment
 - Potential source and reservoir of Listeria
- No pre-cooling of cantaloupes
 - Amplification of Listeria during cold storage
Root Cause Environmental Assessment — Packing Operations Equipment Design

- July 2011: equipment installed at packing facility
 - Replaced hydrocooling wash process
 - Refurbished equipment
 - Not easily disassembled, cleaned, or sanitized
- Two components
 - Brush rollers with spray wash
 - Felt rollers to dry
- First Listeria-positive swab collected from felt roller
- Potential role in contamination of cantaloupes
 - Listeria introduced with equipment
 - Design \Rightarrow difficult to clean \Rightarrow Listeria growth and spread
Root Cause Environmental Assessment — Packing Operations Equipment Design
Root Cause Environmental Assessment — Packing Operations Equipment Design
Root Cause Environmental Assessment — Packing Operations Equipment Design

Cantaloupes enter

Cantaloupes exit
Root Cause Environmental Assessment — Packing Operations Equipment Design

Cantaloupes enter

Brush rollers and spray wash

Felt rollers

Cantaloupes exit
Root Cause Environmental Assessment — Packing Operations Postharvest Practices

- No pre-cooling of cantaloupes to remove field heat
- Residual moisture on cantaloupe rind from wash step
- Contaminated felt rollers spread listeria to cantaloupes
- Warm Cantaloupes boxed in cool storage enabled condensation in packaging
Conclusions

- Whole cantaloupes produced and packed by Farm A caused outbreak
- First reported Listeriosis outbreak associated with whole cantaloupe
 - Ready-to-eat and processed foods previously
- Largest documented U.S. outbreak of Listeriosis
 - Deadliest U.S. foodborne outbreak in >90 years
- Rapid identification and action by Colorado state partners saved lives
Lessons Learned in Investigating Multistate Foodborne Disease Outbreaks

• Multistate outbreak detection enhanced by PFGE Fingerprinting and PulseNet
• Pre-existing control groups for comparison analysis speed vehicle identification
 – Help identify when foods are being consumed in an unusually high rate by ill persons
 – CDC FoodNet Population Survey- Surveys of food consumption in the general public
 – Listeria Initiative- sporadic cases food consumption
• Shopper/customer loyalty card information can provide critical clues
 – Quickly search purchase history for suspect products
 – Facilitate traceback
The Future of Foodborne Outbreak Detection

- New Dispersed Scenario for Foodborne Outbreaks will continue
- Current detection relies on PFGE patterns obtained through culture
- Cultures ordered by physicians to diagnose
- As new non-culture based diagnostics are developed, there will be less isolates to PFGE
 - Example: Point of Care Rapid Antigen Testing
- Existing system for multistate foodborne outbreak detection is in jeopardy
Future Solutions?

- How to continue wide surveillance without cultured isolates is being explored
- Currently no simple solution has been identified
- Continue to encourage stool culture for cases of suspected foodborne illness
- Optimistic that another system will be developed in the future, perhaps by an epidemiology student here today.
Acknowledgments

- State and Local Health Departments
- FDA
- USDA-FSIS
- CDC Colleagues
- Michigan Public Health Association
Thank you very much!

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333
Telephone: 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348
E-mail: cdcinfo@cdc.gov Web: http://www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.